ORIGINAL ARTICLE

Effect of Intermetallic Compounds and Inclusions in Normalizing Rolled C–Mn Steel Plate Butt Joint Failure

N. Ramasamy¹ · D. Jeyasimman¹ · N. Raju²

Received: 13 November 2019/Accepted: 4 July 2020 © The Indian Institute of Metals - IIM 2020

Abstract Production weld tests were usually conducted in steel fabrication industries to ascertain the process reliability and product quality. Plate groove butt joint test specimens, prepared from production weld test coupon, were failed during the mechanical test. To analyse the root cause for joint failure, a series of tests were conducted on prepared samples from production weld test. The macroexamination was conducted at the failed region, and microstructure analysis was carried out by optical microscopy and scanning electron microscopy on the banded structure of the base metal and at heat-affected zone. The purpose of this investigation is to identify the effect of the non-metallic inclusions in the segregated banded zone during welding of plate butt joint and to identify the impurity elements responsible for the weld failure. From this investigation, it was found that the presence of manganese sulphide, lead sulphide and aluminium oxides in the segregated zone decreased the mechanical properties of the plate groove butt joint weld in terms of failure.

Keywords Segregation · Impurity elements · Plate butt joint · Mechanical properties · Weld failure

D. Jeyasimman jeyasimman76@gmail.com; jeyasimmand@pmu.edu

N. Ramasamy nrambhel@gmail.com

N. Raju nraju@bhel.in

¹ Department of Mechanical Engineering, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur 613 404, India

² Welding Research Institute, Tiruchirappalli 620014, India

List of Symbols

ASTM American Society for Testing Materials % Per cent by weight HAZ Heat-affected zone Al₂O₃ Aluminium oxide Mn₃ C Manganese carbide MnS Manganese sulphide SiO₂ Silicon oxide FeC Iron carbide Magnesium oxide MgO PbS Lead sulphide Si Silicon Mn Manganese mm Millimetre С Carbon S Sulphur

1 Introduction

Advances in the plate manufacturing process have enhanced the low level of impurities. In recent years, "clean steel" has been developed and commercialized by plate mill, thereby meeting the demand for steel. The structural steel plates are manufactured with the condition of either normalizing rolled or As rolled. The modern steel plate manufacturer prefers the normalized rolling for its optimum strength, energy savings and pollution-free environment. Normalized rolling steel plates are widely used for non-alloyed structural steel construction industries such as pressure vessel, boilers, bridges and shipbuilding. Hot-rolled medium- and high-tensile structural (C–Mn) steel with normalizing rolled plate Specification: IS 2062 E